

A Gated Self-attention Memory Network for Answer Selection

Tuan Lai*^{1,2}, Quan Hung Tran*², Trung Bui², Daisuke Kihara¹
¹Purdue University, ²Adobe Research

Introduction

- Answer selection is the task of identifying the correct answer to a question from a pool of candidate answers.
- Previous deep learning methods mainly adopt the Compare-Aggregate architecture.
 - Contextualized vector representations of small units are first *compared and aligned*. These comparison results are then *aggregated* to calculate a relevance score.
 - Limitation: The first few layers typically encode the question-candidate pair into sequences of contextualized vector representations separately.
 - These sequences are independent and completely ignore the information from the other sequence.

model (figure adapted from (Wang et al., 2017)).

Abstract

- We take a departure from the popular Compare-Aggregate architecture.
- We propose a new gated self-attention memory network (GSAMN) for answer selection.

- We also propose a simple but effective transfer learning approach by utilizing the large amount of community question answering (CQA) data available online.
- We achieve new state-of-the-art results on the TrecQA and WikiQA datasets.

Gated Self-Attention Mechanism (GSAM)

• Given a context vector \mathbf{c} and a sequence of input vectors $X = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]$

Traditional Attention Mechanism

• Association score α_i is typically a scalar and calculated as a normalized dot product between ${\bf c}$

$$\alpha_i = \frac{\exp(\mathbf{c}^T \mathbf{x}_i)}{\sum_{j \in [1..n]} \exp(\mathbf{c}^T \mathbf{x}_j)}$$

Gated Attention Mechanism

- The association between ${\bf c}$ and ${\bf x}_i$ is represented by a gate vector ${\bf g}_i$ (Dhingra et al., 2017).
 - $\mathbf{g}_i = \sigma(f(\mathbf{c}, \mathbf{x}_i))$
- f is a parameterized function
 → More flexible in modelling the interaction between c and x_i
- The gate vector depends only on a context vector and a single input vector.

Gated Self-Attention Mechanism (GSAM)

- We condition the gate vector not only on a context vector and a single input vector but also on the entire sequence of inputs using self-attention. $\mathbf{g}_i = f_i(c,X)$
 - \mathbf{G}_{t} , \mathbf{J}_{t} ()

Refer to our paper for the full equation.

Gated Self-Attention Memory Network (GSAMN)

- We combine GSAM with the memory network architecture to create GSAMN.
- At the kth reasoning hop

and \mathbf{x}_i .

- Let \mathbf{c}_k be the controlling context vector.
- Let $X_k = [\mathbf{x}_1^k, \mathbf{x}_2^k, ..., \mathbf{x}_n^k]$ be the memory values.
- Each memory cell update from the kth hop to the next hop is calculated as follow:

$$\mathbf{g}_i = f_i(\mathbf{c}_k, X_k)$$
 GSAM $\mathbf{x}_i^{k+1} = \mathbf{g}_i \odot \mathbf{x}_i^k$

• The controller's update is calculated as follow:

$$\mathbf{g}_c = f_c(\mathbf{c}_k, X_k) \qquad \text{GSAM}$$

$$\mathbf{c}_{k+1} = \mathbf{g}_c \odot \mathbf{c}_k + \frac{1}{n} \sum_i \mathbf{x}_i^{k+1}$$

- For answer selection, we first concatenate question Q and candidate answer A to a single input sequence. We then use BERT to initialize the memory values $X_0 = [\mathbf{x}_1^0, \mathbf{x}_2^0, \dots, \mathbf{x}_n^0]$. The control vector \mathbf{c}_0 is a randomly initialized learnable vector.
- We use final controller state \mathbf{c}_T as the final representation. The matching probability is:

Controller + Memory at step k

Figure 2: Simplified computation flow of GSAMN

Transfer Learning

Community Question Answering (CQA)

Many Question-Answer Pairs of Various Domains

- In this work, we employ a basic transfer learning technique consisting of two steps
 - 1. Pre-train our answer selection model on the question-answer pairs collected from CQA data.
 - 2. Fine-tune the same model on a target dataset of interest such as TrecQA or WikiQA.
- Different from previous works which use source datasets that were manually annotated, our source dataset required minimal effort to obtain and preprocess.

Results and Discussions

- Our full model [BERT + GSAMN + Transfer Learning] outperforms the previous state-of-the-art methods by a large margin.
- Both the variants [BERT + GSAMN] and [BERT + Transfer Learning] have better performance than the original BERT baseline. However, both of the partial variants still perform worse than the one with all the techniques.
- GSAMN outperforms the Transformer based variants, with or without the transfer learning component.
- Our model significantly outperforms the variant [ELMo + Compare-Aggregate].

	TrecQA		WikiQA	
Model	MAP	MRR	MAP	MRR
BERT + GSAMN+ Transfer	0.914	0.957	0.857	0.872
BERT + Transformers + Transfer	0.895	0.939	0.831	0.848
BERT + GSAMN	0.906	0.949	0.821	0.832
BERT + Transformers	0.886	0.926	0.813	0.828
ELMo + Compare-Aggregate	0.850	0.898	0.746	0.762
BERT + Transfer	0.902	0.949	0.832	0.849
BERT	0.877	0.922	0.810	0.827
QC + PR + MP CNN (2018)	0.865	0.904		
IWAN + sCARNN (2018)	0.829	0.875	0.716	0.722
IWAN (2017)	0.822	0.889	0.733	0.750
Compare-Aggregate (2017)	0.821	0.899	0.748	0.758
BiMPM (2017)	0.802	0.875	0.718	0.731
HyperQA (2017a)	0.784	0.865	0.705	0.720
NCE-CNN (2016)	0.801	0.877		
Attentive Pooling CNN (2016)	0.753	0.851	0.689	0.696
W&I (2015)	0.746	0.820		_